Total Tayangan Halaman

Senin, 29 Maret 2021

Fungsi Kuadrat

 

Fungsi Kuadrat: Pengertian, Rumus, Grafik, Contoh Soal

 

Pada pembahasan kali ini, kita akan membahas materi tentang fungsi kuadrat.

Pengertian Fungsi Kuadrat

Fungsi kuadrat adalah sebuah fungsi polinom yang memiliki peubah/variabel dengan pangkat tertingginya adalah 2 (dua).

Secara umum fungsi kuadrat memiliki bentuk umum seperti berikut ini:

f(x) = ax2 + bx + c, a ≠ 0

dengan f(x) = y yang merupakan variabel terikat, x adalah variabel bebas, sedangkan a, dan b merupakan koefisien dan c adalah suatu konstanta.

Hal ini tentunya berbeda dengan yang dinamakan persamaan kuadrat, yang mana persamaan kuadrat memiliki variabel dengan pangkat tertingginya adalah dua dan berbentuk persamaan.

Bentuk umum dari persamaan kuadrat adalah sebagai berikut:

ax2 + bx + c = 0, a ≠ 0

dengan x adalah variabel bebas, a dan b adalah koefisien, serta c adalah konstanta.

Kembali ke materi fungsi kuadrat. Suatu fungsi sangat erat hubungannya dengan grafik fungsi.

Begitu pula fungsi kuadrat, yang memiliki grafik fungsinya sendiri. Grafik fungsi kuadrat berbentuk parabola yang dapat digambarkan menggunakan langkah-langkah tertentu.

Jenis-Jenis Fungsi Kuadrat

Sebelum kita membahas cara menggambar grafik fungsi kuadrat, akan kita bahas terlebih dahulu mengenai jenis-jenis lain dari fungsi kuadrat seperti di bawah ini:

1. Jika pada y = ax2 + bx + c nilai b dan c adalah 0, maka fungsi kuadrat menjadi:

y = ax2

yang membuat grafik pada fungsi ini simetris pada x = 0 dan memiliki nilai puncak di titik (0,0)

2. Jika pada y = ax2 + bx + c nilai b bernilai 0, maka fungsi kuadrat akan berbentuk:

y = ax+ c

yang membuat grafik pada fungsi ini simetris pada x = 0 dan memiliki titik puncak di (0,c)

3. Jika titik puncak ada di titik (h,k), maka fungsi kuadrat menjadi:

y = a(x – h)2 + k

dengan hubungan a, b, dan c dengan h, k adalah sebagai berikut:



Setelah kita memahami jenis-jenis fungsi kuadrat yang lain, selanjutnya kita akan membahas cara melukis sebuah grafik fungsi kuadrat. Langkah-langkahnya sebagai berikut:

1.       Menentukan sumbu simetri: x = – b/2a 

2.      Menentukan titik potong kurva dengan sumbu x: misalkan y = 0, maka ax2 + bx + c = 0

3.      Menentukan titik potong dengan sumbu y: misalkan x = 0, maka y = c

4.      Menentukan titik puncak: 

Selain itu, terdapat ciri khusus dari grafik parabola dilihat dari fungsinya. Jika a > 0 maka parabola terbuka ke atas jika sebaliknya maka parabola terbuka ke bawah.

Kemudian pada fungsi kuadrat terdapat istilah diskriminan yang memiliki bentuk:

D = b2 – 4ac

Keterangan

·         Jika D > 0 maka fungsi kuadrat memiliki 2 akar yang berbeda dan memotong di dua titik.

·         Jika D = 0 maka fungsi kuadrat memiliki 2 akar yang sama, sehingga kurva hanya akan menyinggung sumbu x di satu titik.

·         Jika D < 0 maka kurva tidak menyentuh sumbu x sama sekali.

 

Grafik Fungsi Kuadrat

Dari ciri khusus yang dijelaskan di atas, berikut di bawah ini merupakan bentuk-bentuk grafik fungsi kuadrat secara umum beserta sedikit penjelasannya:



Contoh Soal Fungsi Kuadrat

Tentukan nilai maksimum dari fungsi y = x2 – x – 6.

Pembahasan

Nilai maksimum dari suatu fungsi kuadrat adalah



Demikian pembahasan tentang fungsi kuadrat. Semoga bermanfaat.

 

Tidak ada komentar:

Posting Komentar

Contoh Soal Penyajian Data dalam Bentuk tabel dan diagram

  Pada kesempatan kali ini masharist.com akan membagikan  35 contoh soal penyajian data dalam bentuk tabel dan diagram lengkap dengan Jawaba...