Total Tayangan Halaman

Rabu, 10 Maret 2021

Barisan dan Deret Aritmatika

 

Barisan dan Deret Aritmatika: Rumus & Contoh Soal

 

Barisan Aritmatika

Barisan aritmatika adalah susunan bilangan dengan pola tertentu yang selisihnya bersifat tetap.

Dengan kata lain, selisih dari dua suku yang berurutan selalu sama atau tetap. Secara matematis dapat ditulis sebagai berikut:

U1, U2, U3, …, Un-1, Un; b = U2 – U1 = U3 – U2 = … = Un – Un-1

Dimana suku pertama adalah U1 = a, b = beda/selisih tiap suku dengan besar yang sama, dan Un = suku ke-n.

Misal terdapat barisan aritmatika dengan suku pertama (a) sama dengan 3 dan beda (b) sama dengan 4, maka barisan aritmatika yang terbentuk seperti di bawah ini:

3, 7, 11, 15, …, Un

dan ciri khas dari sebuah barisan adalah menggunakan tanda koma (,) sebagai penyambung dengan suku selanjutnya.

Rumus barisan aritmatika

Pada bagian ini kita akan belajar tentang rumus dari barisan aritmatika, yaitu mencari suku ke-n dengan bentuk sebagai berikut:

Un = a + (n – 1)b atau U= Un-1 + b

Dengan

·         U= suku ke-n

·         a = U1

·         Un-1 = suku sebelum suku ke-n

·         b = beda

Selain mencari rumus suku ke-n, terdapat pula rumus mencari nilai tengah dari sebuah barisan aritmatika seperti di bawah ini:

Ut = ½ (a + Un)

Ut = suku tengah

Contoh soal Barisan Aritmatika

Diketahui sebuah barisan aritmatika dengan suku ketiga sama dengan 13 dan suku kelima sama dengan 25. Carilah beda dan suku ke-10 dari barisan tersebut! Kemudian jika suku terakhir adalah suku ke-m dengan m = 50, carilah suku tengahnya?

Diketahui sebuah barisan aritmatika dengan suku ketiga sama dengan 13 dan suku kelima sama dengan 25. Carilah beda dan suku ke-10 dari barisan tersebut! Kemudian jika suku terakhir adalah suku ke-m dengan m = 50, carilah suku tengahnya?

PEMBAHASAN

b dan U= …?

U5 – U= U4 – U3

25 – U4 = U4 – 13

U= 19

Karena b = U– Un-1, maka b = U5 – U= U4 – U= 6

Sehingga didapatkan a = 1.

Un = a + (n – 1)b

U10 = 1 + (9)(6)

U10 = 55

Ut = …?

Um = a + (m – 1)b

U50 = 1 + (49)(6)

U50 = 295

Sehingga diperoleh

Ut = 1/2(a + Um)

Ut = 1/2(1 + 295)

Ut = 296/2

Ut = 198

Deret Aritmatika

Setelah kita memahami barisan aritmatika, sekarang kita akan membahas tentang deret aritmatika yang merupakan penjumlahan dari sebuah barisan aritmatika.

Bentuk dari deret aritmatika adalah seperti di bawah ini:

U+ U2 + U3 + … Un-1 + Un

Dengan U1, U2, U3, …, Un-1, Un merupakan barisan aritmatika. Ciri khas dari bentuk deret aritmatika adalah menggunakan tanda tambah (+) di antara dua suku berurutan.

 

Rumus deret aritmatika

Dalam penyusunannya, rumus deret aritmatika memiliki komponen yang sama dengan barisan aritmatika.

Pembedanya adalah rumus barisan aritmatika digunakan untuk mencari sebuah suku yang diinginkan, sedangkan deret aritmatika merupakan penjumlahan dari suku-suku tersebut.

Berikut rumus dari deret aritmatika:

Sn = n/2 (a + Un) = n/2(2a + (n – 1)b)

dengan S= jumlah n suku pertama

Dari rumus ini, kita juga dapat mencari suku ke-n dengan cara sebagai berikut:

Un = S– Sn-1

Agar semakin memahami materi deret aritmatika, perhatikan contoh soal dan penyelesaiannya di bawah ini.

 

Contoh Soal Deret Aritmatika

1. Suatu deret aritmatika memiliki rumus Sn = 3/n2 + ½n. Tentukan nilai suku ke-5 dalam deret aritmatika tersebut

 

PEMBAHASAN

Dalam menyelesaikan soal deret aritmatika, kita harus memahami 2 konsep utama dalam deret aritmatika yaitu Sn dan Un.

Smenyatakan jumlah n suku pertama suatu deret matematika, sedangkan Umenyatakan nilai suatu suku ke-n dalam deret aritmatika yang sedang dikerjakan.

Jika melihat pada soal tersebut, kita mengetahui bahwa jumlah n suatu suku pertama deret aritmatika dinyatakan dalam  Sn = 3/n2 + ½n.

Namun, kita tidak mengetahui rumus nilai suatu suku ke-n. Dalam deret aritmatika, kita dapat melakukan pengurangan jumlah n suatu suku pertama dengan jumlah n-1 suatu suku pertama untuk mendapatkan nilai Un tertentu.

Dalam soal, kita diminta untuk mencari suku ke-5 atau n=5. Sehingga kita dapat menuliskannya dalam bentuk U5. Kita dapat mengurangi Sdan Suntuk mendapatkan U5.

Sn = 3/n2 + ½n

S5 = 3/(5)2 + ½(5) = 40

S4 = 3/(4)2 + ½4) = 11,5

U=  S– S= 40 – 11,5 = 28,5

2. Diketahui sebuah deret artimatika memiliki nilai U1, U7, U13 masing-masing adalah 20, 68, dan 116. Tentukan nilai Sdari deret aritmatika tersebut.

 

PEMBAHASAN

Dalam mengerjakan soal tersebut, pertama kita dapat menentukan nilai a dan b dalam rumus deret aritmatika.

Untuk menentukan nilai a, kita dapat menggunakan rumus Un. Sedangkan nilai b, kita dapat menggunakan nilai Uatau U13.

Selanjutnya, kita dapat langsung mengerjakan nilai dari S9.

Un = a+(n-1)b

U1 = a+(1-1)b

U= a

20 = a

U= a + (7-1)b

U= 20 + 6b

68 = 20 + 6b

68 – 20 = 6b

b = 8

Sn = n/2 (2a + (n-1)b)

S9 = 9/2 (2.20 + (9-1)8)

S9 = 9/2 (40 + 64)

S9 = 9/2 (104)

S9 = 468

3. Diberikan sebuah deret aritmatika di mana suku ke-9 sama dengan dua kali suku ke-4. Jika suku pertama deret tersebut adalah 6. Tentukan nilai jumlah 6 suku pertama deret artimatika

PEMBAHASAN

Diketahui di dalam soal suku ke-9 sama dengan dua kali suku ke-4, sehingga kita dapat menuliskan persamaan U= 2.U4.

Selain itu, dijelaskan bahwa U= 6. Dalam soal sebelumnya, jika U= a. Maka, kita dapat menyelesaikan deret aritmatika seperti di bawah ini.

Un = a+(n-1)b

U= 2.U4

6+(9-1)b = 2.( 6+(4-1)b)

6+8b = 2.(6+3b)

6+8b = 12+6b

8b – 6b = 12 – 6

b = 3

Sn = n/2 (2a + (n-1)b)

S6 = 6/2 (2.6 + (6-1)3)

S6 = 6/2 (12 + 15)

S6 = 3 x 27 = 81

4. Tentukan jumlah pada deret berikut ini jika 18+(a+2)+(a+4)+(a+6)+………+50 =

PEMBAHASAN

Dalam soal, diketahui nilai U= 18 dan memiliki b = 2. Untuk mengerjakan soal tersebut, kita harus mengetahui jumlah banyak deret tersebut.

Dalam menentukan banyaknya deret, dapat menggunakan nilai deret terakhir.

U= a + (n-1)b

50 = 18 + (n-1)2

32 = 2n – 2

34 = 2n

n = 17

Sn = n/2 (2a + (n-1)b)

S17 = 17/2 (2.18 + (17-1)2)

S17 = 17/2 (36 + 32)

S17 = 17/2 (68)

S17 = 578

5. Diketahui sebuah bentuk matematika seperti berikut

3√2197 < x < √1849

Jika b=2, tentukan jumlah semua nilai x

PEMBAHASAN

Untuk menyelesaikan deret aritmatika di atas, maka kita harus mengetahui nilai batas bawah 3√2197 dan batas atas √1849. 

Setelah itu, kita dapat menentukan banyak deret tersebut dan mencari nilai Sn. 

3√2197 = 13

√1849 = 43

13 < x < 43

Dari bentuk di atas, dapat kita ketahui bahwa nilai a = 13.

U= a + (n-1)b

43 = 13 + (n-1)2

30 = 2n – 2

32 = 2n

n = 16

Terdapat 16 suku dalam deret aritmatika tersebut. Sedangkan dalam soal, jumlah yang dicari adalah nilai x tidak termasuk batas bawah dan batas atas.

Maka, kita dapat mencari nilai Sn kemudian dikurangi dengan Udan U16 sehingga terbentuk jumlah x.

Sn = n/2 (2a + (n-1)b)

S16 = 16/2 (2.13 + (16-1)2)

S16 = 16/2 (26 + 30)

S16 = 16/2 (56)

S16 = 448
S
= S16 – U1 – U16

S= 448 – 13 – 43 = 392

6. Diketahui sebuah barisan berjumlah 60 memiliki suku pertama 5 dengan beda tiap sukunya yaitu 7. Berpakah jumlah 60 suku pertama pada barisan tersebut?

PEMBAHASAN

Diketahui: n = 60, a = 5, b = 7

Cara 1

Un = a + (n – 1)b

U60 = 5 + (59)(7)

U60 = 418

Sehingga

S60 = 60/2 (5 + 418)

S60 = 12.690

Cara 2

S60 = 60/2 ((2)(5) + (60 – 1)(7))

S60 = 30(10 + 413)

S60 = 12.690

 

Tidak ada komentar:

Posting Komentar

Contoh Soal Penyajian Data dalam Bentuk tabel dan diagram

  Pada kesempatan kali ini masharist.com akan membagikan  35 contoh soal penyajian data dalam bentuk tabel dan diagram lengkap dengan Jawaba...