Total Tayangan Halaman

Kamis, 15 April 2021

Distribusi Normal

 

Distribusi Normal: Pengertian, Rumus, Contoh Soal

 

Pembahasan artikel kali ini mengenai distribusi normal.

Pernahkah kalian mengetahui distribusi normal?

Distribusi normal merupakan salah satu pembahasan dalam statistika yang berkaitan dengan distribusi peluang (distribusi probabilitas).

Tentu kalian sudah tahu kan mengenai distribusi dari suatu variabel diskret dan variabel kontinu.

Distribusi normal ini merupakan salah satu distribusi dari suatu variable yang kontinu.

Berikut ini akan dijelaskan terlebih dahulu mengenai distribusi normal.

Pengertian Distribusi Normal

Apa itu distribusi normal?

Distribusi normal merupakan salah satu jenis distribusi dengan variabel acak yang kontinu.

Pada distribusi normal terdapat kurva/grafik yang digambarkan menyerupai bentuk lonceng.

Distribusi normal dapat disebut juga sebagai distribusi Gauss. Persamaan yang terdapat dalam distribusi normal salah satunya yaitu terkait fungsi densitas.

Berikut merupakan fungsi densitas pada distribusi normal.

Rumus Distribusi Normal



Keterangan:

·         π : konstanta dengan nilai 3,14159. . .

·         e  : bilangan eksponensial dengan nilai 2,7183 . . .

·         µ  : rata-rata (mean) dari data

·         σ  : simpangan baku data berdistribusi normal

Bagaimana cara untuk menghitung nilai z? Nilai z dapat dihitung dengan rumus berikut.

Keterangan:

·         µ  : rata-rata (mean) dari data

·         σ  : simpangan baku data berdistribusi normal

Pada bagian sebelumnya dijelaskan bahwa data yang berdistribusi normal memiliki kurva yang berbentuk menyerupai lonceng.

Bentuk kurva dari data berdistribusi normal yaitu sebagai berikut.



Berdasarkan kurva distribusi normal di atas, distribusi normal memiliki rata-rata (mean) sama dengan 0 dan simpangan baku sama dengan 1.

Berikut ini akan dijelaskan mengenai beberapa contoh penerapan distribusi normal.

Penerapan Distribusi Normal

Distribusi normal sangat penting untuk dipelajari terutama dalam melakukan analisis data statistika.

Dengan data yang diambil secara acak dan berdistribusi normal akan memudahkan dalam melakukan analisis dan meramalkan serta mengambil kesimpulan untuk cakupan yang lebih luas.

Distribusi normal banyak diterapkan dalam berbagai perhitungan statistika dan pemodelan yang berguna dalam berbagai bidang.

Dalam menentukan distribusi probabilitas diperlukan tabel z dari distribusi normal.

Tabel Z Distribusi Normal

Berikut merupakan tabel nilai z pada data yang berdistribusi normal.





Tabel Z distribusi normal

Pada tabel di atas terdapat acuan pada baris dan kolomnya. Hal tersebut untuk memudahkan dalam menentukan nilai z.

Berikut langkah-langkah dalam menentukan nilai z.

1.       Perhatikan pada bagian kolom awal. Misalkan kita akan menentukan nilai untuk 1,56. Maka langkah pertama kita mencari pada baris 1,5.

2.      Perhatikan pada baris awal. Carilah nilai 0,06.

3.      Tentukan titik temu (sel) dari baris dan kolom yang dimaksud. Nilai z untuk 1,56 adalah 0,9406.

Berikut merupakan contoh soal terkait distribusi kelompok untuk meningkatkan pemahaman kalian.

Contoh Soal Distribusi Kelompok

Dalam suatu ujian terdapat 300 siswa yang mengikuti ujian tersebut. Rata-rata dari hasil ujian yaitu 70 serta simpangan baku hasil ujian tersebut adalah 10.

Jika data nilai hasil ujian siswa tersebut berdistribusi normal, maka berapa persen mahasiswa yang mendapat nilai A jika syarat untuk mendapatkan nilai A adalah nilai lebih dari 85.

Pembahasan

Berdasarkan contoh soal di atas, diperoleh informasi sebagai berikut.

µ  = 70

σ  = 10

x  = 85

akan ditentukan Z(X>85).

Z(X > 85) = 1 – Z(X < 85)

Akan dihitung terlebih dahulu nilai dari Z (X < 85)

Z = (85 – 70)/10 = 15/10 = 1,5

Nilai Z untuk 1,50 adalah 0,9332, sehingga

Z(X > 85) = 1 – Z(X < 85)

Z(X > 85) = 1 – 0,9332

Z(X > 85) = 0,0668

Z(X > 85) = 6,68%

Mari kita simpulkan materi mengenai distribusi normal.

Kesimpulan

Distribusi normal merupakan salah satu jenis distribusi dengan variabel acak yang kontinu. Pada distribusi normal terdapat kurva/grafik yang digambarkan menyerupai bentuk lonceng.

Untuk menentukan nilai z atau z-score  dapat digunakan rumus berikut.

z = (x – µ)/σ

Tabel nilai z pada distribusi normal digunakan untuk mempermudah dalam menentukan z-score.

Demikian pembahasan pada artikel dengan judul “Distribusi Normal”, semoga artikel ini dapat berguna bagi kalian dalam mempelajari materi statistika selanjutnya. Terima kasih.

 

 

Tidak ada komentar:

Posting Komentar

Contoh Soal Penyajian Data dalam Bentuk tabel dan diagram

  Pada kesempatan kali ini masharist.com akan membagikan  35 contoh soal penyajian data dalam bentuk tabel dan diagram lengkap dengan Jawaba...